Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides
نویسندگان
چکیده
Synthetic peptides of the five alternative NH2-terminal sequences of Shaker when applied to the cytoplasmic side of ShB channels that have an NH2-terminal deletion (ShB delta 6-46) block the channel with potencies correlated with the rate of inactivation in the corresponding variant. These peptides share no sequence similarity and yet three out of the five have apparent dissociation constants between 2 and 15 microM, suggesting that the specificity requirements for binding are low. To identify the primary structural determinants required for effective block of ShB delta 6-46, we examined the effects of substitutions made to the 20 residue ShB peptide on association and dissociation rates. Nonpolar residues within the peptide appear to be important in stabilizing the binding through hydrophobic interactions. Substitutions to leucine-7 showed there was a clear correlation between hydrophobicity and the dissociation rate constant (koff) with little effect on the association rate constant (kon). Substituting charged residues for hydrophobic residues within the region 4-8 disrupted binding. Within the COOH-terminal half of the peptide, substitutions that increased the net positive charge increased kon with relatively small changes in koff, suggesting the involvement of long-range electrostatic interactions in increasing the effective concentration of the peptide. Neutralizing charged residues produced small changes in koff. Charges within the region 12-20 act equivalently; alterations which conserved net charge produced little effect on either kon or koff. The results are consistent with this region of the peptide having an extended conformation and suggest that when bound this region makes few contacts with the channel protein and remains relatively unconstrained. Analogous mutations within the NH2-terminal domain of the intact ShB channel produced qualitatively similar effects on blocking and unblocking rates.
منابع مشابه
A peptide derived from the Shaker B K+ channel produces short and long blocks of reconstituted Ca(2+)-dependent K+ channels.
A 20 amino acid synthetic peptide, corresponding to the amino-terminal region of the Shaker B (ShB) K+ channel and responsible for its fast inactivation, can block large conductance Ca(2+)-dependent K+ channels from rat brain and muscle. The ShB inactivation peptide produces two kinetically distinct blocking events in these channels. At lower concentrations, it produces short blocks, and at hig...
متن کاملHomology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The h...
متن کاملClosed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions
Voltage-gated K(+) (Kv) channel activation depends on interactions between voltage sensors and an intracellular activation gate that controls access to a central pore cavity. Here, we hypothesize that this gate is additionally responsible for closed-state inactivation (CSI) in Kv4.x channels. These Kv channels undergo CSI by a mechanism that is still poorly understood. To test the hypothesis, w...
متن کاملEnergetics of Shaker K channels block by inactivation peptides
A synthetic peptide of the NH2-terminal inactivation domain of the ShB channel blocks Shaker channels which have an NH2-terminal deletion and mimics many of the characteristics of the intramolecular inactivation reaction. To investigate the role of electrostatic interactions in both peptide block and the inactivation process we measured the kinetics of block of macroscopic currents recorded fro...
متن کاملSelectivity filter gating in large-conductance Ca2+-activated K+ channels
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 102 شماره
صفحات -
تاریخ انتشار 1993